1.1 Prime and Composite Numbers

A **prime number** is an integer greater than 1 that has no other positive integer factors other than 1 and itself.

Examples:

2, 3, 5, and 7 are prime numbers since their only factors are 1 and themselves (For example, the only factors of 3 are 1 and 3). However, 6 is <u>not</u> prime since it has two different sets of integer factors: 1 and 6 or 2 and 3.

A factor of a number is a divisor of that number (it divides evenly into it)

Examples:

- (i) List all factors of 10
- 1, 2, 5, and 10 are all factors of 10 since they all divide evenly into 10.
- Of these factors, only 2 and 5 are prime factors.
- (ii) Show the following numbers as products of prime factors
- $\blacksquare 12 = 2 \times 2 \times 3$
- $= 50 = 2 \times 5 \times 5$

A multiple of a number is the product of that number times another whole number greater than 0.

Example: Multiples of $5 \text{ are } (5 \times 1) = 5$; $(5 \times 2) = 10$; $(5 \times 3) = 15$; $(5 \times 4) = 20$; etc.

A **composite number** is not a prime number and can be factored in more than one way. All numbers that are not prime are composite (with the exception of 1).

Example: 15 is a composite number since it can be factored as 15×1 or 5×3 .

Examples with Solutions

1. Which of the following numbers are <u>not</u> prime?

1, 3, 4, 5, 7, 9, 11, 15

1 is not prime since it is not greater than 1.

4, 9, and 15 are not prime. They are composite, since they have more than one pair of factors.

For example, 9 can be factored as 9×1 or 3×3 .

2. List all factors of 20.

Factor 20 as follows $2 \times 2 \times 5$

The set of all factors consists of all numbers that

divide evenly into 20.

The numbers are 1 plus all combinations of 2, 2,

and 5 shown in step 1.

Answer: 1, 2, 4, 5, 10, 20

3. List all multiples of 7 less than 40.

Multiples of 7 consist of numbers that are the

product of 7 times 1, 2, 3, 4, ..., etc.

We want multiples of 7 less than 40.

 $7 \times 1, 7 \times 2, 7 \times 3, 7 \times 4, 7 \times 5.$ (7 × 6 is 42,

which is larger than 40.)

Answer: 7, 14, 21, 28, 35

4. Show 90 as a product of <u>prime</u> factors.

Factor 90 until all factors are broken down into

prime factors.

 $90 = 9 \times 10 = 3 \times 3 \times 2 \times 5$

Exercises 1.1

1. Identify whether or not each number is prime. Then give a reason for it.

Number	Yes/No	Reason
a. 22	,	
b. 31	ſ	·
c. 77		•
d. 57		
e. 43		
f. 51		

2. List all factors of each number. Then list the prime factors only.

<u>Number</u>	All Factors	Prime Factors Only	
a. 30			
b. 100	₹		
c. 75	i		
d. 90	·:		
e. 135			
f. 38			

3. List all multiples of the following numbers that meet each condition.

<u>Number</u>	<u>Multiples of the Number</u>	
a. all multiples of 11 that are greater than 40 and less than 100		
b. all multiples of 5 between 11 and 41		
c. all multiples of 9 less than 100		
d. all multiples of 20 less than 200	, .	
e. all multiples of 13 less than 100 that are odd numbers.		
•	•	

4. Write each number as a product of prime factors.

Number	Product of Primes	Number	Product of Primes
a. 30		f. 1000	
b. 12	*	g. 90	-
c. 26		h. 216	
d. 36	``:	i. 196	
e. 250		j. 242	,

Extra for Experts

- 5. List all factors which are <u>common</u> to both 9 and 30.
- 6. List all factors which are <u>common</u> to 10, 14, and 70.
- 7. List all numbers less than 100 that are multiples of both 15 and 10.
- 8. List all numbers less than 50 that are multiples of both 3 and 5.
- 9. I am a multiple of both 9 and 15. I am less than 200 and more than 150. Who am I?